

Fuel Economy Standards in Kenya

A Technical Insight and Policy Rationale

Published by

Supported by:

based on a decision of the German Bundestag

Project Background

The Introducing Measures, Pathways and Roadmaps for Optimizing Vehicle Efficiency and Electrification (IMPROVE) project is implemented by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and funded through the International Climate Initiative (IKI) of the German Federal Ministry for Environment, Nature Conservation and Nuclear Safety (BMUV).

IMPROVE supports the development of regulatory instruments that enhance vehicle energy efficiency and promote the electrification of vehicle fleets in its partner countries. It also fosters stakeholder coordination and knowledge exchange on vehicle efficiency, sustainable mobility, and climate change. In Kenya, the project is implemented in collaboration with the State Department for Transport, with a focus on designing regulatory instruments for vehicle efficiency—particularly for newly imported vehicles—while supporting the broader shift toward zero-emission transport solutions.

About Changing Transport

We enable the rapid development of zero emissions transport systems to shape a liveable and just future. GIZ works on changing transport towards a sustainable pathway and facilitating climate actions in mobility. We support decision-makers in emerging and developing countries through training and consulting services, as well as by connecting stakeholders. Our ultimate goal is zero-emission transport. You can learn more about our projects on www.changing-transport.org.

Disclaimer

The content presented in this document has been compiled with the utmost care. Nevertheless, GIZ gives no guarantee that the information provided is current, accurate, complete or error-free. GIZ accepts no liability for damage or loss arising directly or indirectly from the use of this document, provided it has not been caused intentionally or by gross negligence.

GIZ expressly reserves the right to modify or append this document in part or in whole without prior notice, or to halt publication completely or for a limited period. Cartographic presentations in no way constitute recognition under international law of boundaries and territories. The content of GIZ GmbH's documents is protected by copyright. The images used are marked with photo credits where required by law. The use of any images requires the prior consent of GIZ GmbH, if not stated otherwise.

Content

E	Executive Summary 1								
1	The Mis	sing Link in Kenya's Transport Transition	2						
	1.1	What is a fuel economy standard?	3						
	1.2	Kenya's Regulatory Environment	3						
	1.3	Kenya's current fleet landscape	4						
	1.4	Key Benefits of Adopting a Fuel Economy Standard in Kenya	5						
	1.5	Aligning Fuel Economy Standards with EV Promotion policies	7						
2	Interna	tional Practices	8						
	2.1	The European Union	8						
	2.2	India	8						
	2.3	Chile	8						
	2.4	Japan	8						
	2.5	New Zealand	9						
3	Conclus	sion1	0						
В	ibliograpl	hy1	2						
L	ist of Ta	ables							
Ta	able 1 Sun	nmary of fuel economy standards worldwide and their relevance to Kenya	9						

Exchange rates

KES	EUR	USD	Date
1 KES	0.0066 EUR	0.0077 USD	03.09.2025

List of Acronyms and Abbreviations

CAFE Corporate Average Fuel Economy

CAFC Corporate Average Fuel Consumption

CO₂ Carbon Dioxide EV Electric Vehicle

GFEI Global Fuel Economy Initiative

GHG Greenhouse Gas

ICE Internal Combustion Engine

KNEECS Kenya National Energy Efficiency and Conservation Strategy

L/100 km Litres per 100 kilometres (fuel consumption metric)

km/L Kilometres per litre (fuel consumption metric)

MtCO₂e Million tonnes of carbon dioxide equivalent

NCCAP III National Climate Change Action Plan (Third Cycle)

NDC Nationally Determined Contribution

Executive Summary

Kenya's transport sector is rapidly expanding, driven by population growth, rising vehicle ownership, and urbanisation. This growth, however, is fuelling greenhouse gas (GHG) emissions, worsening urban air quality, and increasing reliance on fossil fuel imports. In 2023, the sector accounted for 10.8 Mt CO₂e (million tonnes of carbon dioxide equivalent), with road freight and used internal combustion engine (ICE) vehicles as the dominant sources. Approximately 85% of vehicles imported into Kenya are second-hand, resulting in an aging fleet that is less fuel-efficient and more polluting.

To address these challenges, fuel economy standards offer a proven policy pathway. A fuel economy or CO₂ standard sets minimum efficiency requirements for imported and newly sold vehicles, ensuring a gradual shift toward cleaner, more efficient vehicle technologies. Globally, such standards have been shown to reduce fuel use, cut greenhouse gas and air pollutant emissions, accelerate electric vehicle (EV) adoption, and lower consumer fuel costs.

Kenya is well positioned to act. As a partner in the Global Fuel Economy Initiative (GFEI), Kenya aligns with targets to double fuel economy by 2030 (equivalent to reducing from 7.5 L/100 km (Kenya's 2019 baseline) to 3.75 L/100 km) and cut vehicle CO_2 emissions by 90% by 2050. Achieving these goals will require strong policies to curb the influx of inefficient ICE vehicles and encourage EV uptake.

Key Benefits of a Fuel Economy Standard

- Climate alignment: Supports Kenya's Nationally Determined Contributions (NDCs), National Climate Change Action Plan (NCCAP III), and positions the transport sector as a driver of long-term decarbonisation and resilience.
- **Economic efficiency:** Reduces national fuel import bills and household fuel expenditure, freeing resources for investment in other productive sectors.
- Energy security: Shifts demand toward Kenya's abundant renewable energy resources, improving energy independence and stability.
- Health & competitiveness: Cuts air pollution while modernising Kenya's vehicle fleet to improve efficiency, reliability, and competitiveness as a regional logistics and trade hub.

Recommendations to strengthen Kenya's vehicle efficiency framework

- 1. Develop a national fuel economy/CO₂ standard for imported vehicles, using a combined metric of km/L or gCO₂/km, with progressive tightening over time.
- 2. Introduce mandatory vehicle labelling to inform consumers on vehicle efficiency before importation, improving market transparency.
- 3. Implement a compliance structure that incentivises efficient vehicles while penalising inefficient models.
- 4. Align efficiency benchmarks with source markets particularly Japan to harmonise pre-importation vehicle selection and enforcement.
- 5. Integrate EV promotion strategies with fuel economy standards to ensure mutually reinforcing policies that lower emissions while accelerating the shift to electric mobility.

1 The Missing Link in Kenya's Transport Transition

The transport sector in Kenya is growing rapidly, driven by rising vehicle ownership, population growth, and increasing urbanisation. With growing global concerns about reducing greenhouse gas emissions, the country finds itself at a crossroads. Kenya must determine how to balance rising demand for transport whilst ensuring that the goals of the Paris Climate Agreement are met. This challenge is compounded by the fact that the country has an economic development target of becoming an industrialised middle-income country by 2030, with transport being central to industrialisation.

This dilemma is already reflected in the country's emissions profile. The transport sector in Kenya accounted for 10.8MtCO₂e (million tonnes of carbon dioxide equivalent), of Kenya's total greenhouse gas (GHG) emissions in 2023, according to the Emissions Database for Global Atmospheric Research (EDGAR) country profile. The emissions primarily stem from a fleet powered by internal combustion engines (ICE) which are dependent on fossil fuels. In addition, approximately 85% of the vehicles imported are second-hand contributing to an older, less efficient, and more polluting fleet (Trace Data Research, 2024).

To address these challenges, the Government is exploring ways to increase electric vehicles (EV) uptake, which can reduce emissions and fossil fuel dependence. As of 2024 the total number of electric vehicles stood at 5294, from 3753 at the end of 2023, indicating a 41% rise (EPRA, 2025). These figures are still nascent compared to the total fleet which stood at 4.6 million vehicles as of 2022 (CEIC, 2021).

Despite rising EV uptake, structural barriers persist particularly the steady influx of used, internal combustion engine vehicles, which continue to dominate the second-hand vehicle import market. In this context, relying solely on incentives to grow the EV market is both costly and insufficient.

A national fuel economy or CO₂ standard can play a transformative role. Rather than targeting consumer behaviour, such a policy shifts market dynamics, by regulating what types of vehicles are allowed into the country. It sets minimum efficiency thresholds for all imported and newly sold vehicles, pushing importers and distributors towards cleaner, more efficient and increasingly, electric vehicle options.

Fuel economy standards have been proven globally to accelerate EV adoption by making electric models more competitive compared to conventional vehicles and influencing overall market trends. As such, they are not a temporary fix or a bridge solution, but a long-term strategy to anchor clean mobility in the vehicle supply chain supporting climate goals, reducing household fuel costs, and strengthening national energy security.

1.1 What is a fuel economy standard?

A fuel economy standard is a regulatory instrument that sets targets for vehicle fuel consumption, either at the minimum efficiency level or at maximum fuel consumption. The standards are effective measures designed to reduce greenhouse gas emissions by reducing fuel consumption. They can be set using different metrics that depend on a country's measurement systems, policy goals and regulatory frameworks.

Common approaches to setting fuel economy standards are as follows:

Fuel consumption (L/100km or km/L)

Fuel consumption measures how much fuel is used by vehicles to travel a certain distance. It is expressed as kilometres per litre (km/L), or litres per 100 kilometres (L/100km).

Carbon Dioxide Emitted per Kilometre (CO₂ emissions (gCO₂/km))

This metric measures how much carbon dioxide is emitted per kilometre based on fuel combusted by vehicles.

Application Framework

In most countries, fuel economy standards are not applied to each individual vehicle, but rather to the corporate average of vehicles sold. Corporate Average Fuel Economy (CAFE) or Corporate Average Fuel Consumption (CAFC) are applied to manufacturers rather than individual vehicles. Manufacturers are required to meet an average efficiency across all vehicles sold.

The setting of fuel economy standards ensures that vehicle manufacturers, importers and dealers prioritise production, importation and sale of more efficient (ultimately electric) models. This is coupled with transparency in comparing vehicle performances which is crucial in making informed decisions when purchasing vehicles.

The standards are applicable to all newly sold or imported vehicles and are designed to encourage the adoption of cleaner and more efficient vehicle technologies, while at the same time reducing fuel costs for consumers.

1.2 Kenya's Regulatory Environment

Currently, Kenya lacks a formal regulatory framework that ensures compliance with minimum vehicle efficiency levels. However, the country has made regulatory commitments that support fuel economy from a broader perspective.

1.2.1 The Kenya National Energy Efficiency and Conservation Strategy (KNEECS) 2020-2025

The Kenya National Energy Efficiency and Conservation Strategy highlights targets for fuel economy in Kenya. The strategy envisions improvement of Kenya's light duty vehicles fuel economy to 6.5L/100 km (15.38km/L) by 2025 as compared to a baseline of 7.5L/100 km (13.33km/L) in 2019 (Ministry of Energy, 2020). As much as the

strategy paves the way for vehicle efficiency discussions, it stops short of prescribing the development of fuel economy standards, limiting itself to broad reduction targets without clear implementation measures.

1.2.2 The National Climate Change Action Plan (NCCAP III) 2023-2027

The National Climate Change Action Plan highlights the goal of "increasing fuel efficiency in trucks through the adoption of improved standards" as part of an overall goal of transitioning to electric mobility by 2028 (Ministry of Environment, 2023). This strategic action plan provides a strong policy anchor for the development of fuel economy standards in Kenya. Whereas the goal is on heavy duty vehicles, NCCAP III paves the way for fuel efficiency measures across all vehicle categories. Such commitments initiate and provide momentum for policy alignment and formalisation for fuel economy regulations in Kenya.

1.2.3 Global Fuel Economy Initiative (GFEI)

Kenya is a signatory to the Global Fuel Economy Initiative (GFEI), which helps countries set targets for fuel economy. GFEI has a target of doubling the global average light-duty vehicle fuel economy by 2030 and reducing CO₂ emissions from vehicles by 90% by 2050. Using Kenya's 2019 baseline of 7.5 L/100km (13.3km/L), the doubling target translates to approximately 3.75 L/100 km (26.6km/L) by 2030. Achieving the long-term 2050 emissions target will require widespread electrification of the vehicle fleet. As a GFEI partner country, Kenya is well positioned to initiate the development of a fuel economy standard aligned with these global targets.

Despite these commitments and policy intentions, Kenya lacks the prerequisite legislation framework to operationalise and enforce fuel economy standards.

1.3 Kenya's current fleet landscape

Kenya's vehicle fleet is primarily composed of imported second-hand vehicles mainly from Japan, the United Kingdom, Singapore, Thailand, India and South Africa. According to the Global Fuel Economy Initiative, the average age of imported vehicles in Kenya was 7 years between 2010 to 2016. This importation trend continues to this day.

In addition, according to the Kenya National Energy Efficiency and Conservation Strategy (KNEECS) 2020-2025, the average vehicle fuel economy was 7.5L/100 km in 2019. This remains significantly above the global aspired target of 4.2L/100km set for 2030, highlighting the scale of improvements required over the coming decade (Ministry of Energy, 2020).

The following challenges contribute to inefficiencies in the current landscape:

- Lack of regulatory frameworks to guide the importation of fuel-efficient vehicles by importers and dealers.
- Limited consumer awareness on fuel economy and the benefits that can be accrued from purchase of fuel-efficient vehicles.

- Import/purchase decisions being driven by vehicle purchase price with no regard to long term fuel costs or emissions.
- The unavailability of a fuel economy labelling system that guides buyers in understanding the vehicle's performance during purchase.

Consequently, Kenya continues to have a prevalence of vehicles with a low purchase price, but high operating costs, with associated emissions contributing to high GHG levels. These challenges amplify the need for Kenya to develop a fuel economy standard that will guide consumer purchases towards more fuel-efficient vehicles and align the vehicle market with the country's climate and energy efficiency goals.

1.4 Key Benefits of Adopting a Fuel Economy Standard in Kenya

The adoption of a national fuel economy standard can bring multiple benefits to the country such as:

Reduction of fuel costs for consumers

Adoption of the standard would ideally reduce the average costs incurred by consumers on fuel purchase. For example, as of 2019, the average fuel economy in Kenya was 7.5L/100km. Considering a shift to the global target of 4.2L/100km (GFEI target), with an average fuel price of KES 177 per litre (petrol cost in June 2025, (EPRA, 2025)) and an average mileage of 8,000km yearly, consumers can save KES 46,000 (\$354) yearly. In a country where transport related costs cover a significant percentage of a household's expenses, such savings from fuel costs would be crucial for consumers.

Reduction in imported fuel dependence

Implementation of a fuel economy standard would significantly reduce vehicles' fuel consumption, thereby reducing Kenya's dependence on imported petroleum. Kenya currently spends around USD 5 billion annually on petroleum imports (Nation, 2024). Of this, 72% of the petroleum products imported to the country are consumed by the transport sector (Ministry of Energy, 2020). Reducing fuel demand not only conserves foreign exchange reserves, but it also advances the country's energy security by reducing reliance on imported fuel.

Reduction in greenhouse gas emissions

The adoption of a fuel economy standard offers a critical pathway for Kenya to meet its climate commitments through GHG reductions. Kenya has a target of reducing greenhouse gas emissions by 35% by 2035 relative to a business-as-usual (BAU) scenario of 215 MtCO₂e, according to its Second Nationally Determined Contribution (2031–2035). This is an ambitious abatement of 75.25 MtCO₂e by 2035. Transport, being a key sector in the growing emissions in the country, is key in achieving this target.

According to the KNEECS, the country aims to reduce the average carbon dioxide (CO₂) emissions per km travelled to 160g/km by 2025 against a 2019 baseline of 181.9g/km by improving fuel economy of vehicles. Adoption of a fuel economy

standard would therefore directly contribute to these goals through reduction of CO₂ emissions.

Increased uptake of Electric Vehicles

A fuel economy standard can be designed to contribute to the acceleration of electric vehicle (EV) adoption and other low emission vehicle technologies. This may be achieved by setting thresholds that phase out inefficient high consumption vehicles and promoting more efficient models such as hybrids, plug in vehicles and battery electric vehicles.

In addition, the standard can assist Kenya in achieving its target of 5% of all newly registered vehicles being EVs by 2025, as highlighted in the Kenya National Energy Efficiency and Conservation Strategy (KNEECS) 2020-2025. Progress in achieving this goal remains a challenge due to the absence of vehicle efficiency regulations such as fuel economy standards.

Air Quality and a modernised vehicle fleet

Improvement in fuel economy would help reduce and discourage the importation of older, fuel-inefficient vehicle models, while encouraging the importation of newer vehicles that meet the minimum requirements. The standard would promote the importation of newer vehicles with improved fuel economy whilst improving air quality, given that transport emissions contributes significantly to particulate matter (PM2.5) pollution.

Consumer Empowerment

A vehicle fuel economy and CO_2 labelling system can serve as a strategic entry point for implementing a national fuel economy standard. By making key data—such as fuel consumption, CO_2 emissions, and estimated annual fuel costs—visible at the point of sale, labels empower consumers to make informed choices by considering long-term operating costs alongside the upfront price. Introducing labelling as a first step allows for early action: it raises public awareness, improves market transparency, and supports data collection on vehicle imports. This makes it easier to transition toward full fuel economy regulation over time.

Kenya's National Energy Efficiency and Conservation Strategy, recognises this potential, calling for both standards and labelling. Starting with labelling would offer immediate consumer benefits while preparing the ground for long-term impact on fleet efficiency and emissions.

Mobilisation of Investment

Formulation of a fuel economy standard would establish a stable policy framework for private sector investment, through establishment of a predictable and stable policy environment. By setting efficiency thresholds, the standard would incentivise importation and local assembly of fuel efficient and electric vehicles, while ensuring alignment with long term national policies. It would also encourage investments in secondary supportive infrastructure such as vehicle inspection and testing centres, data platforms and electric mobility charging infrastructure. Kenya can position itself strategically to leverage concessional financing, technical assistance, and blended finance tools under global initiatives. The standard can therefore help unlock both private and public capital.

1.5 Aligning Fuel Economy Standards with EV Promotion policies

Fuel economy standards can complement existing electric vehicle policies by steering the market toward electrification. While they initially apply to internal combustion engine (ICE) vehicles, well-designed standards can progressively phase out inefficient models and create a strong incentive for manufacturers and importers to shift toward zero-emission alternatives such as EVs. Ultimately, fuel economy standards serve as a regulatory pathway that supports and accelerates the transition to electric mobility.

The fuel economy standard can be designed to:

- Favour adoption of EVs by creating compliance pathways: Indirectly, the standard can be designed to set ambitious CO₂ emission or fuel consumption thresholds, that are difficult for ICE to meet. The standard would therefore encourage the importation and adoption of hybrids, plug in hybrids, and battery electric vehicles.
- Support of Zero Emission Vehicle (ZEV) mandates: A ZEV mandate which stipulates the minimum share of electric vehicles to be sold in a market can be implemented alongside a fuel economy standard. In the short-term, the standard can ensure efficiency gains while paving way for long term vehicle electrification.
- Aligned with fiscal measures: Fuel economy standards can be aligned with tax incentives for efficient vehicles or penalties for inefficient vehicles. This measure would institute both consumer and importer behavioural change towards more efficient vehicles such as EVs.

2 International Practices

Globally, countries are at different levels of adoption of fuel economy standards driven by different priorities such as GHG emission reduction, curbing of fuel consumption and stimulation of innovation in vehicle technologies.

2.1 The European Union

The European Union has set stringent CO₂ emission targets for vehicles: 93.6 g CO₂/km for 2025-2029, and 49.5 g CO₂/km for 2030-2034, with a goal of achieving 0 gCO₂/km by 2035 (100% reduction) (European Commission, 2024). The targets are based on the Worldwide harmonised Light vehicles Test Procedure (WLTP). Compliance is implemented through penalties to the manufacturers when they exceed specific emission target in a given year. Manufacturers pay an excess emission premium for each vehicle target exceedance of €95 per gCO₂/km. Such measures have successfully driven target compliance.

2.2 India

In 2017 India, introduced a Corporate Average Fuel Efficiency (CAFÉ) standard to curb fuel consumption by lowering CO₂ emissions with an aim of reducing oil dependency. The country phased implementation of the standards where CAFÉ stage I standards took effect in 2017-2018 and stage II in 2022-2023. The standards set a target of 4.78L/100km and an average CO₂ emission of 113 gCO₂/km, from 2023 onwards (Bureau of Energy Efficiency India, 2024). These standards incentivise the enhancement of fuel efficiency by automakers and reduction of fuel consumption in their vehicles.

2.3 Chile

In 2021 Chile enacted an energy efficiency law which established fuel economy standards for the transport sector. As a net importer of vehicles, with 100% of its fleet being imported (ICCT, 2022), Chile set a target of 18.8km/L from 2024 to 2026 against a baseline of 14.9km/L in 2020 for passenger vehicles. The country has an ambition of increasing it to 22.8 km/L by 2027 and 28.9 km/L by 2030. For compliance, the country introduced progressive fees for vehicles that do not meet the stipulated fuel economy and emissions thresholds.

2.4 Japan

In 2019 Japan introduced fuel economy standards for passenger vehicles targeting an average fleet fuel economy of 25.4 km/L by 2030, as compared to a baseline of 19.2km/L in 2016) (ICCT, 2019). In addition, Japan introduced mandatory Vehicle Fuel Efficiency Labelling program which requires manufacturers to display the percentage by which a vehicle exceeds the fuel consumption standards. However, the label does not indicate actual fuel economy or CO₂ emission (ICCT, 2015). Given that Kenya imports 94% of used vehicles from Japan (Business Daily, 2024), aligning Kenya's fuel economy standard with Japanese vehicle performance benchmarks presents a strategic and practical opportunity.

For example, according to the 2019 baseline, Kenya's average fuel consumption was 7.5L/100km, significantly higher than Japan where the average fuel consumption in the same year was 5.5L/100km (IEA, 2021). While this 2 litres difference per 100km highlights an immediate efficiency gain Kenya could capture, Japan's level should be treated as a minimum target. A more ambitious trajectory would progressively move Kenya closer to global best practice levels, ensuring long-term alignment with climate and energy efficiency goals.

2.5 New Zealand

New Zealand introduced the Clean Vehicles Standard which sets targets for reducing CO₂ emissions from vehicles and imposes charges on vehicle importers who do not achieve the stipulated targets. As a country that does not manufacture vehicles, New Zealand rather relies entirely on imports. The standard set a target of 84.5g CO₂/km by 2026 and 63.3g CO₂/km by 2027 against a baseline of 169g CO₂/km in 2021 for passenger vehicles (Ministry of Transport NZ, 2024). In addition, New Zealand enforces a Vehicle Energy Economy Label regulation that requires CO₂ emissions and other information to be displayed (online and physically) for vehicles being sold.

Table 1 Summary of fuel economy standards worldwide and their relevance to Kenya

Country/ Region	Market Type	Fuel Economy Target	CO ₂ Emission Target	Approach	Enforcement Mechanism	Lessons for Kenya
EU	Manufacturing	N/A	93.6 gCO₂/km by 2025, 0 gCO₂/km by 2035	Corporate Average CO ₂ Standards	Manufacturer fines (€95/gCO₂/km)	Penalties drive compliance; clear roadmap to zero emissions
India	Manufacturing	4.78 L/100km	113 gCO₂/km (2023 onwards)	CAFE (Corporate Average)	Incentivised compliance	Phased implementation allows industry adjustment
Chile	Importing (New)	18.8 km/L (2024), 28.9 km/L (2030)	N/A	Fuel Consumption (km/L)	Progressive fees for non- compliance	Ambitious targets can work with import incentives and penalties
Japan	Manufacturing	25.4 km/L (2030)	N/A	Fuel Consumption (km/L), Labelling	Efficiency labels, no CO ₂ shown	Labelling promotes informed consumer choices; Kenya can adopt similar standards (low ambition approach)
New Zealand	Importing (Second-hand & New)	N/A	84.5 gCO ₂ /km (2026), 63.3 (2027)	CO ₂ Emissions (gCO ₂ /km)	Importer penalties	Feasible for import nations; enforceable through customs and sales labelling

3 Conclusion

Kenya's transport sector is rapidly expanding due to rising rates of motorisation, urbanisation and population. Similarly, an expanding vehicle fleet predominantly composed of used second-hand vehicles are increasing fuel consumption and greenhouse gas emission levels. Yearly, thousands of vehicles are registered in Kenya, with a large share having low fuel efficiency levels due to the lack of import restrictions based on vehicle performance. This trend exacerbates fuel consumption and CO₂ emissions, consequently undermining the national climate targets such as Kenya's Climate Change Action Plan and Nationally Determined Contributions. Similarly, households are burdened with increasing transportation costs driven by the rise in fuel consumption, while the Government is burdened by dependency on imported fuel affecting foreign reserves.

Despite Kenya's forward-looking policies and strategies on clean and efficient mobility, a fundamental regulatory tool is still lacking: a fuel economy standard. Adoption of such a standard would regulate fuel consumption and CO₂ emitted by vehicles. The standard coupled with a fuel efficiency label, can go a long way in influencing consumer choices of fuel-efficient vehicles and initiate complementary policies on transport electrification.

A critical benefit of a fuel economy standard is the ability to synergise with electric vehicle promotion strategies and policies. By setting emission or fuel consumption thresholds that gradually tighten over time, the standard can aid the acceleration of EV adoption by phasing out inefficient internal combustion engines. Such an initiative not only supports adoption of EVs but also strengthens the regulatory ecosystem for a low emission transport transition.

Economically, the standard has a potential of reducing annual fuel costs for households and the country. The Government can benefit through improved trade balances and reduced importation of fossil fuels. By reducing reliance on imported oil, these outcomes strengthen Kenya's economic stability and open the door for greater integration of its growing renewable energy supply.

Given the widespread global adoption of fuel economy and CO₂ standards, Kenya can draw on a broad base of international experience particularly from other import-dependent countries such as Chile and New Zealand. These countries have shown that it is entirely feasible to adopt and enforce fuel economy regulations even without a domestic vehicle manufacturing industry. Their standards focus on controlling the efficiency of imported vehicles, making them highly relevant for Kenya's context. Additionally, given that Kenya imports a large share of vehicles from Japan, the country can align the standards with the Japanese standards. This would enable Kenya benefit from the more fuel efficient and lower emission models from Japan.

Technical Recommendations

- 1. **Develop a national fuel economy/CO₂ standard** for imported vehicles with a combined metric of km/L or gCO₂/km target that can be progressed over time.
- 2. **Introduce vehicle labelling** that informs customers on vehicle performance with a focus on vehicle efficiency, before importation.
- 3. **Implement a compliance structure** for efficiency that incentivises efficient vehicles while penalising inefficient models.
- 4. **Align vehicle efficiency benchmarks with source markets** especially Japan, to streamline vehicle selection pre importation and enforcement.
- 5. **Integrate EV promotion strategies with fuel economy** to ensure aligned reinforcement measures for lowering emissions while shifting to electric vehicles.

A national fuel economy standard offers Kenya a powerful, cost-effective tool to advance multiple goals at once - it is a timely and necessary reform for achieving Kenya's climate, energy, economic, and transport modernisation goals.

Bibliography

- Bureau of Energy Efficiency (BEE). (n.d.). Corporate average fuel economy (CAFE) norms. Government of India. https://udit.beeindia.gov.in/cafe/#1582101890364-da399f5a-6749
- Business Daily. (2024). Kenya buys 94pc of used vehicles from Japan. https://www.businessdailyafrica.com/bd/markets/market-news/kenya-buys-94pc-of-used-vehicles-from-japan--4336552
- CEIC Data. (2021). Road transport: Number of motor vehicles registered Kenya. https://www.ceicdata.com/en/kenya/road-transport-number-of-motor-vehicles-registered/
- EDGAR. (2025). Country profile: Kenya. Emissions Database for Global Atmospheric Research. https://edgar.jrc.ec.europa.eu/country profile/KEN
- Energy and Petroleum Regulatory Authority (EPRA). (2025). Bi-annual energy & petroleum statistics report 2024/2025. https://www.epra.go.ke/sites/default/files/2025-03/Bi-Annual%20Energy%20%26%20Petroleum%20Statistics%20Report%202024_2025.pdf
- Energy and Petroleum Regulatory Authority (EPRA). (2025). Press release June 2025. https://www.epra.go.ke/sites/default/files/2025-06/PRESS%20RELEASE-%20JUNE%20SIGNED%202025.pdf
- European Commission. (2022). Light-duty vehicles CO₂ emissions performance standards. https://climate.ec.europa.eu/eu-action/transport-decarbonisation/road-transport/light-duty-vehicles en
- Global Fuel Economy Initiative. (n.d.). Shifting to cleaner and more fuel efficient vehicles – Kenya fact sheet.
- Government of Kenya. (2020). Kenya's second nationally determined contribution (NDC) 2021–2030. Government of Kenya.
- International Council on Clean Transportation (ICCT). (2015). Vehicle fuel efficiency labelling (VFEL) paper for APEC. https://theicct.org/sites/default/files/publications/VFEL%20paper%20ICCT_%20for%20APEC%20-%2012%20Nov%202015%20FINAL.pdf
- International Council on Clean Transportation (ICCT). (2019). Japan's 2030 fuel economy standards for passenger vehicles. https://theicct.org/wp-content/uploads/2021/06/Japan 2030 fuel standard update 20191007.pdf
- International Council on Clean Transportation (ICCT). (2022). Fuel economy standards in Latin America: Light- and heavy-duty vehicles in Chile. https://theicct.org/wp-content/uploads/2022/08/lat-am-lvs-hvs-chile-EN-aug22.pdf
- International Energy Agency (IEA). (2021). Fuel economy in Japan. https://www.iea.org/articles/fuel-economy-in-japan
- Ministry of Energy. (2020). Kenya national energy efficiency and conservation strategy (KNEECS) 2020–2025. Government of Kenya.

- Ministry of Environment and Forestry. (2023). National climate change action plan (NCCAP III) 2023–2027. Government of Kenya.
- Nation Media Group. (2024). Kenya's fuel import bill dips 4pc as high cost puts off consumers. https://nation.africa/kenya/business/kenya-s-fuel-import-bill-dips-4pc-as-high-cost-put-off-consumers-4288088
- New Zealand Ministry of Transport. (n.d.). Clean car programme. https://www.transport.govt.nz/area-of-interest/environment-and-climate-change/clean-cars
- Trace Data Research. (2024). Kenya auto finance market industry report. https://www.tracedataresearch.com/industry-report/kenya-auto-finance-market
- United Nations. (2021). Global Fuel Economy Initiative relaunched to accelerate progress in decarbonising road transport. https://sdgs.un.org/partnerships/global-fuel-economy-initiative-gfei-relaunched-accelerate-progress-decarbonising-road

As a federally owned enterprise, GIZ supports the German Government in achieving its objectives in the field of international cooperation for sustainable development.

Published by:

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices

Bonn and Eschborn, Germany

Friedrich-Ebert-Allee 36+40 53113 Bonn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15

E info@giz.de I www.giz.de

Author/Responsible/Editor, etc.:

Robert Njoroge

Design:

Eugene Waithaka & Robert Njoroge

Photo credits/sources:

GIZ / James Ochweri (Highway) GIZ / KPLC Conference (EV) Georgi Kalaydzhiev on Unsplash (Odometer)

URL links:

This publication contains links to external websites. Responsibility for the content of the listed external sites always lies with their respective publishers. When the links to these sites were first posted, GIZ checked the third-party content to establish whether it could give rise to civil or criminal liability. However, the constant review of the links to external sites cannot reasonably be expected without concrete indication of a violation of rights. If GIZ itself becomes aware or is notified by a third party that an external site it has provided a link to gives rise to civil or criminal liability, it will remove the link to this site immediately. GIZ expressly dissociates itself from such content.

Printing and distribution:

GIZ IMPROVE, Nairobi, Kenya

Nairobi 2025

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66

Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15

Е

info@giz.de www.giz.de www.changingtransport.org